
Active Learning in the Presence of Unlabelable
Examples

Dominic Mazzonil and Kiri Wagstaffl

Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA,

{Dominic. Mazzoni , K i r i .Wagstaf f}Qjpl .nasa. gov

Abstract. We propose a new active learning framework where the ex-
pert labeler is allowed to decline to label any example. This may be
necessary because the true label is unknown or because the example be-
longs to a class that is not part of the real training problem. We show
that within this framework, popular active learning algorithms (such as
Simple) may perform worse than random selection because they make so
many queries to the unlabelable class. We present a method by which any
active learning algorithm can be modified to avoid unlabelable examples
by training a second classifier to distinguish between the labelable and
unlabelable classes. We also demonstrate the effectiveness of the method
on two benchmark data sets and a real-world problem.

1 Introduction

For many classification problems, class labels must be provided by a domain ex-
pert and are therefore expensive to acquire. The standard approach to classifica-
tion assumes that all labeled examples are provided up front. Active learning [l]
attempts to reduce this burden by incrementally selecting only the most useful
items for labeling. For this to be effective, the expert labeler is required to assign
a valid label to whatever items the active learner selects. However, there are cases
where an item does not fall into any of the specified classes, or the expert may
be unsure about its classification. Requiring the expert to assign labels for these
items introduces unnecessary errors into the learning process. Even if the expert
is allowed to abstain from assigning a label, we find that this situation can cause
typical active learning algorithms to perform worse than random selection.

As a concrete example, consider the problem of training an automatic cloud
mask from satellite images. Given image data from NASA’s Multi-angle Imaging
Spectrohdiometer (MISR) instrument [2], the goal is to correctly classify each
pixel as either “clear” or “cloudy”. Figure l(a) shows a scene captured by MISR
over the Sahara desert, containing areas of clouds, clear desert, and a third region
contaminated by dust. The expert labeler can easily identify the pixels in region
3 as being neither clear land nor clouds, and therefore irrelevant to the classifier
goal. Assigning them to either class would be misleading. Figure l(b) shows the
accuracy of three algorithms when evaluated on the problem of separating cloudy
and clear pixels. These algorithms will be described more fully in Section 2.1. The

1-

0.99 -

0.98 -
).

8
5 0.97 -
3

0.96 -

0.95 -
-& Random

0 100 200 300
Trial

0.94

Fig. 1. Part of the Sahara Desert captured by MISR’s 70-degree forward-looking cam-
era on February 6, 2004. The three boxes represent regions that are (1) Cloudy, (2)
Clear, and (3) Other. On the right is the accuracy achieved by Simple when trained
on regions 1 and 2 (“Optimal”) as well as Random and Simple when trained on all 3
regions (region 3 marked as unlabelable). All results were averaged over 100 trials.

first curve is “Optimal Simple’’ which is the performance achieved by the Simple
Margin active learning algorithm [3] when trained only on cloudy and clear
pixels. “Simple” shows the performance of the same algorithm when unlabelable
(dusty) pixels are included in the training set, and “Random” indicates random
selection in the presence of unlabelable pixels. The three algorithms were tested
only on labeled pixels. Simple’s learning rate slowed down significantly because
it devoted a large percentage (79%) of its queries to unlabelable pixels. In fact, it
performed much worse than random selection. We will discuss this phenomenon
in more detail in Section 2.3.

This paper seeks to address the limitations of current active learning meth-
ods when unlabelable items are present via two major contributions. First, we
propose an active learning framework where “unknown” is a valid response from
the trainer. Second, we present active learning methods that can make effective
use of this information to improve the efficiency and reduce the cost of active
learning. Section 2 formalizes the problem of performing active learning and
highlights the modifications that are necessary when some labels are unknown.
We present our solution to this problem in Section 3, experimental results in
Section 4, and key conclusions in Section 5.

2 Active Learning

We focus on pool-based active learning, where the learner has access to a (fixed)
pool of items for which it can request labels. We assume the existence of a pool
U = {xi} of unlabeled items. Each xi is a d-dimensional vector in Euclidean
space, and the items are assumed to be i.i.d. according to an unknown fixed
distribution P(z) . In addition, there exists a binary classification label yi E (51)
for each xi that is available, upon request, from the expert labeler. The expert
can be a human or an automated labeler that incurs some cost per query; we
refer to the expert’s labeling of x as f(x). Let C be the set of items for which
the learner has already requested labels. On each trial, the active learner selects
an unlabeled item 2 from U and receives its label, y = f (z). The learner then
applies its classifier learning algorithm to C U { (z, y)} to train a new model.

In this section, we first describe a variety of algorithms that have been pro-
posed and then discuss how the active learning problem changes when unla-
belable items may exist.

2.1 Active Learning Algorithms

Although active learning is not restricted to any single inductive learning tech-
nique, much of the recent work in this area has focused on active learning for
support vector machines (SVMs) [4] due to their strong performance on a va-
riety of problems. An SVM is a binary classifier that constructs a hyperplane
in d dimensions to separate the two classes. In particular, it seeks the hyper-
plane that will maximize the margin, or distance between each class and the
hyperplane. For classes that are not linearly separable, the SVM implicitly maps
each point into a higher-dimensional space via a kernel function, which often im-
proves separability. All active learning methods seek to select the item x which,
when labeled, will provide the most benefit in terms of an increase in accuracy
achieved by the model constructed from C U x.

1. Random: This method selects x E U randomly. It is equivalent to “passive”
learning, as the algorithm has no input on the order of the items it sees. I t
serves as a baseline for comparison with active learning algorithms.

2. Simple Margin (“Simple”) [3]: Simple assumes that the item closest to
the current hyperplane is likely to be the most helpful for updating the hy-
perplane in the next trial. This algorithm ranks each example by its distance
from the hyperplane (computed using the absolute value of the SVM output
on this example) and then chooses the minimum.

3. MaxMin Marg in [3]: Rather than guessing that the item closest to the
hyperplane will yield the most information, this method aims to empirically
test which item will be most effective. Let m be the size of the separation be-
tween the positive and negative classes (the margin) for a given SVM. Then,
for each z E U , this method trains two SVMs: one on C U {(z, $1)) (yield-
ing m+) and one on C U { (x, -1)) (yielding m-). Finally, MaxMin selects
z such that min(m-, m+) is maximized. For efficiency, we only considered
20% of the queries each trial.

4. Diverse [5] : This algorithm attempts to avoid choosing too many similar
queries by increasing the diversity of the chosen examples. The diversity of
C u z can be maximized by selecting z whose maximum normalized kernel
distance to all of the other labeled examples is minimized. The complete
method uses a weighted sum of diversity and hyperplane distance, controlled
by a parameter A, where X = 0 is the equivalent of focusing solely on diversity
and X = 1 is the same as Simple. We determined that X = 0.5 worked well
for our experiments.

5 . Kernel-farthest-first (KFF) [6]: This method maximizes the minimum
distance from x to all x’ E C. This algorithm only works well for a few
special XOR-type problems, but we included it because it gave interesting
results in one of our experiments (Section 4).

2.2 Probabilist ic Active Learning

Because each of the algorithms described above is a heuristic, it may not always
be advantageous to select the top-ranked query. We considered a variant that as-
signs a probability to each query based on the ranking produced by the algorithm
and then randomly chooses an item according to this distribution. Specifically,
we normalized the results of each algorithm ACTIVE to a value between 0.0 and
1.0 (to be maximized). We then assigned the probability of picking each query
using a Gaussian function, chosen so that queries with a value of 1.0 are about
100 times more likely to be picked than ones with a value of 0.0:

,-4.6(ACTIVE(z) - 1)’ P(92) =

The next query is chosen according to this distribution. We will use the abbre-
viation Prob. before the name of an active learning algorithm to designate the
probabilistic variant.

2.3

Each of the existing active learning methods uses a different heuristic to select
the next item for labeling, but they were all designed with the assumption that
the label exists. As shown in Figure 1, when this assumption fails, active learning
can perform worse than random selection. Therefore, we propose a new model of
the active learning problem that allows for the possibility of unlabelable items.

We model the expert labeler as a function f’ that maps items to three pos-
sible values, yi E { - l , O , +l}. A value of 0 indicates that the label is unknown.
Again, on each trial, the active learner applies a selection function to choose an
unlabeled item 2 from 2.4. The learner proceeds normally unless f’(x) = 0, in
which case it acquires no new information and must wait until the following trial
to make a new request. There are several possible ways to handle this situation.

First, the learner could ignore the unlabelable examples. As previously dis-
cussed, t,his is undesirable because it can cause active learning to perform worse

Active Learning wi th Unlabelable Items

than random selection in terms of learning speed. For example, the Simple al-
gorithm deliberately selects items that are ambiguous (close to the current SVM
hyperplane). When the ambiguous items are not members of the two classes the
SVM is attempting to learn, Simple will query exactly the items that help it
the least. This is the case for the MISR example shown in Figure 1.

Second, the learner could assign all unlabelable examples to one of the valid
classes, such as the positive class. This introduces noise into the labels. If the
unlabeled examples overlap both classes, the SVM is forced to find a much
more complex solution to successfully separate the classes. Even if they do not
overlap, the positive class is likely to have worse generalization performance,
since i t includes items that are not true positives.

Third, another strategy would be to train a multi-class classifier, where the
unlabelable examples would be assigned to a separate class. For some problems
this could be effective, but it is not optimal as it is likely to cause the learner to
spend time querying and modeling the third class.

Instead, we propose a model where the learner collects unlabeled items ZE in
a set R of rejected queries, which it can potentially use to try to avoid querying
unlabelable examples in the future. Because the cost of acquiring y must be
paid regardless of its information value, it is to the learner's advantage to avoid
requesting items that are unlabelable. Correctly predicting which items are likely
to be labelable is an independent learning problem for which good performance
will enable much more efficient active learning.

3 Solution: Biasing Toward Labelable Examples

We propose an active learner that trains an additional classifier to distinguish
between the set of examples in C (the labeled set, both positive and negative
examples) and the examples in R (the set of queries that were rejected as unla-
belable). The learner then uses this extra classifier, C, to influence its decision
about which example should be chosen next. We chose to make the positive class
be the labelable class (trained from the examples in 13) and the negative class
be the unlabelable class (trained using R).

This method can be used to augment any existing active learning algorithm,
rather than relying on any one particular algorithm. We formulated two ap-
proaches to using the results of C improve ACTIVE'S performance: .

1. Reject Unlabelable (RU): Evaluate all of the examples in the pool using
the new classifier C. Create a new pool P f C P of the examples which C
considers to be labelable, and run ACTIVE on P' to choose the next query.

2. Labelable Bias (LB): Instead of using a hard cutoff that completely elim-
inates some examples that may actually labelable, we can use C as a proba-
bilistic weighting that affects the relative score of each example in the pool.
LB first uses ACTIVE to rank all of the examples in the pool, then normalizes
the scores so that they are all in the range [0,1]. Let ~ O ~ ~ [A C T I V E (Z)] be the
normalized result of ACTIVE on example TC. We then maximize the product

1 .

0.99.

0 9 8 .

5 097.

2.

0
8
Q:

096.

Trial
0 50 100 150 200 250 300

Trial

Fig. 2. M E R results for two methods that attempt to avoid unlabeled examples. “Op-
timal Simple” is included for comparison. All results are averaged over 100 trials.

of norm[ACTIVE(x)] and P(labelable(s). When C is an SVM, P(labelab1elz)
can be derived by taking the SVM output, clipping values outside the range
[-1,1] and mapping to the range [0,1] , or formally:

if C (s) 2 1

if C(Z) 5 -1
LB[ACTIVE](Z) G norln[ACTIVE(rc)] . if - 1 < C(Z) < 1

In our experiments, we trained an SVM for C using the same training parameters
(e.g. kernel) as was used for ACTIVE.

Figure 2 shows the results obtained by both of these approaches, when AC-
TIVE is Simple, on the MISR cloud classification data set shown in Figure 1.
The figure also includes the results of Simple, Random, and Op t ima l Simple
for comparison. The figure shows both the accuracy and the average number of
unlabeled examples chosen at each trial. Intuitively, the more unlabelable ex-
amples that are chosen by the learner, the worse its overall accuracy should be.
For example, Simple selected the largest number of unlabelable examples, and
it had the worst performance. Figure 2 shows that both RU-Simple and LB-
Simple significantly reduced the number of unlabelable examples chosen, and
they both had higher performance than Random and Simple.

4 Experimental Results

When the expert labeler has the option to abstain from providing a label to an
active learner, it is important for the learner to be able to avoid making queries
of that kind so as to maximize the amount of information it receives. To evaluate
the effectiveness of our proposed approach, we conducted experiments on several
data sets, with and without unlabelable items.

4.1 Evaluation Metrics

To compare the effectiveness of different active learning algorithms, we use
three evaluation methods. Deficiency [6] seeks to quantify the learner’s over-
all improvement in learning efficiency as compared to passive learning. Let
Acct(ACTIVE) be the level of accuracy achieved by active learner ACTIVE at
trial t . After n trials (1 5 n 5 IIAl), we calculate the defficiency of ACTIVE,
normalized against the performance of Random, as

(1)
cy=, Acc,(Random) - Acq(.4CTIVE)

Cy=, Acc,.(Random) - Acct(Random) ’
Deff,(ACTIVE) E

Defficiency compares the area under the learning curve to the accuracy achieved
by Random after n trials. Smaller values of defficiency (which can be nega-
tive when n < lU1) indicate more efficient active learning. The defficiency of
R a n d o m is, by definition, always 1.0.

In some cases, however, we are more interested in how quickly the learner
reaches a specific level of accuracy (p). We define p-trials(ALG) to be the number
of trials required by ALG to reach accuracy p and p-speed to be the factor of
improvement with respect to Random, where larger values of p-speed indicate
faster convergence:

p-trials(Random)
p-trials(ACTIVE)

pspeed(ACT1VE) 5

The preceding algorithms are useful for comparing the relative efficiency of
different active learners. However, we also require a measure that indicates how
effectively an active learner performs in the presence of unlabeled items. We
define OptAcci(ACT1VE) as the accuracy that would be obtained by ACTIVE after
a selection trials, if the algorithm could perfectly avoid unlabeled items. Then
the label eficiency (Leff) is defined as the algorithm’s performance relative to
OptAcc, with Random as a lower bound:

. (3)
E?=, (ACC~(ACTIVE) - Acci(Random))

cy=1 (OptAcci (ACTIVE) - Acci(Random))
Leff,(ACTIVE) E

Thus, larger values are better (closer to optimal).

4.2 Digit Recognition

The MNIST data set consists of scanned images of handwritten digits 0 through
9. Each image is composed of 28x28 pixels, which are the features for that image.
The goal is to learn to distinguish between different digits, allowing for the wide
variation that naturally occurs in human handwriting. We used a subset of the
full data set that contained 10,000 items, 1,000 from each class (digit). For these
experiments, we focus on learning to separate digits 1 and 7, which is one of the
more difficult cases. The 8,000 items representing the eight other digits are all
unlabelable items, since they are neither 1’s nor 7’s and performance on them

1 Algorithm

Maxmin
Diverse
Prob. Simple
Prob. Maxmin
Prob. Diverse
LB-Simple
RU-Simple
LB-Maxmin
RU-Maxmin
LB-Diverse
RU-Diverse
Prob. LB-Simple
Prob. RU-Simple
Prob. LB-Maxmin
Prob. RU-Maxmir
Prob. LB-Diverse
Prob. RU-Diverse
LB-KFF

mz
1.00
0.61
5.06
0.66
0.69
0.94
1.06
0.47
0.58
4.61
3.57
0.64
0.72
0.57
0.66
0.98
1.12
0.95
0.94
4.26

95%-trials
65
38

34
39
68

38
39

-

-

-

-
39
55
45
44
69

64
56

-

95%-speed
1.00
1.71

1.91
1.67
0.96

1.71
1.67

-

-

-

-
1.67
1.18
1.44
1.48
0.94

1.02
1.16

-

GGO
0.00
0.42

0.36
0.34
0.07

0.56
0.43

-

-

-
-

0.39
0.30
0.47
0.37
0.02

0.06
0.07

-

unlabelable chose:
240 (80%)
284 (95%)
242 (81%)
278 (93%)
274 (91%)
237 (79%)
241 (80%)
215 (72%)
199 (G6%)
108 (36%)
130 (43%)
240 (80%)
237 (79%)
217 (72%)
208 (69%)
127 (42%)
115 (38%)
239 (80%)
240 (80%)
91 (30%)

Table 1. Results of experiments on the MNIST data, averaged over 30 runs. The task
was to learn to separate digits 1 and 7, with all other digits present as unlabeled data.
The best value in each column is in bold. We omitted results for the three middle
columns for algorithms that never reached 95% accuracy or performed worse than
Random.

is irrelevant. For each experiment, we used a subset of 1500 digits for the pool
(roughly 150 of each class) and evaluated on a random disjoint set of 1000 test
digits (all 1’s and 7’s, roughly 500 of each). For our SVM we used an RBF kernel
with y = 1 and C = 1.

While this particular problem is contrived, it is very similar to the task of
creating a new database similar to MNIST: if the images of digits were extracted
using some automatic process, it is highly likely that these examples would
sometimes contain items other than digits, such as letters, symbols, or even just
noise. An active learning algorithm that learned to be sensitive to these extra
classes could speed up the process of labeling these images. We believe that the
problem of learning to distinguish between two digits, with other digits thrown
in as distractions, is a reasonable analogue to this real problem.

We ran several active learning algorithms on this data set, and for each
algorithm we tried both the traditional and the probabilistic variation (Prob.),
with and without RU and LB. Table 1 reports for each algorithm, after 300
trials, the defficiency, the number of trials required to reach 95% accuracy, the
corresponding 95%-speed (compared to Random) , the label efficiency, and the
number of unlabelable examples chosen.

0.99 1
0.98 .

6

8
5 0.97 -
Q

-++ Optimal Diverse
-8- LE-Simple 0.95.

0.94 I

0 50 100 150 200 250 300
Trial

Fig. 3. MNIST results, averaged over 30 runs, for Simple and Diverse, compared
to their optimal performance (no unlabelable examples) and their performance when
using LB.

LB-Simple achieves the best defficiency and label efficiency, while Diverse
achieves 95% accuracy in the least number of trials. Interestingly, LB-KFF is
the most effective approach for minimizing the number of unlabelable exam-
ples chosen. However, it has a very poor defficiency score, performing much
worse than Random. This suggests that strictly minimizing the number of un-
labelable examples cannot ensure that accuracy will be maximized. However,
KFF is known to perform poorly on most problems; it is specifically designed
for a few unusual cases. The overall trend we observe in this table is that RU
and LB almost always improve defficiency and label eaciency. However, they
also tend to increase the number of trials required to reach 95% accuracy.

Figure 3 shows the full learning curves for Simple and Diverse. The opti-
mal performance, when no unlabelable examples are selected, shows the upper
bound on performance for each method. Using LB significantly improves the
performance of each algorithm. (To make all of the graphs in this paper easier
to read, we are plotting the mean of the accuracies for 20 neighboring trials.)

4.3

As another experiment, we tested our algorithms on the dna data set from the
StatLog repository [7]. The goal of this task is to use the DNA sequence on ei-
ther side of a splice junction to distinguish between three classes, corresponding
to exon/intron boundaries (E1 sites, or “donors”), intron/exon boundaries (IE
sites, or “acceptors”), and neither. We focus on the binary subproblem of distin-
guishing between the.two types of splice junctions, in which case we consider the
remaining examples to be unlabelable. We assigned the E1 sites to the positive
class and the IE sites to the negative class. Each feature vector contains 60 DNA
base pairs, encoded using three binary features. We trained our SVMs using the
same parameters as those used in the one-vs-one experiments by Hsu and Lin
[SI: namely an RBF kernel with y = 2-6 and C = 8. Each experiment was run

Classifying Splice Junctions in Primate DNA Sequences

Algorithm
Random
Simple
Maxmin
Diverse
Prob. Simple
Prob. Maxmin
Prob. Diverse
LB-Simple
RU-Simple
LB-Maxmin
RU-Maxmin
LB-Diverse
RU-Diverse
Prob. LB-Simple
Prob. RU-Simple
Prob. LB-Maxmin
Prob. RU-MaxmiI
Prob. LB-Diverse
Prob. RU-Diverse

mGi
1.00
0.80
1.65
1.23
0.78
0.91
1.00
0.30
0.35
1.28
1.01
0.99
0.84
0.59
0.56
0.85
0.70
0.94
0.94

9O%-triak
125
120
-
-

112
127
136
65
72
-
-

142
111
85
85
107
99
126
124

9O%-speec
1.00
1.04
-
-

1.12
0.98
0.92
1.92
1.74
-
-

0.88
1.13
1.47
1.47
1.17
1.26
0.99
1.01

Leff300
0.00
0.19
-

.-
0.25
0.13
0.00
0.67
0.63
-
-

0.01
0.15
0.47
0.50
0.23
0.46
0.08
0.08

+ unlabelable choser
160 (53%)
216 (72%)
197 (66%)
232 (77%)
194 (65%)
155 (52%)
168 (56%)
106 (35%)
86 (29%)
31 (10%)
85 (28%)
187 (62%)
160 (53%)
114 (38%)
98 (33%)
84 (28%)
78 (26%)
158 (53%)
157 (52%)

Table 2. Results of experiments on the DNA data, averaged over 30 runs. The task was
to learn to separate splice boundaries. Note that LB-KFF is missing, and LB-diverse
is using 0.75 instead of 0.5.

on a pool of 1000 examples chosen from the training set of 2000 examples (464
positive, 485 negative, 1051 unlabelable) and tested on the labelable examples
from the test set (303 positive, 280 negative).

Table 2 reports on the results with the same set of algorithms as in the
previous problem. In this case, the LB-Simple algorithm is the clear winner
according to all three of our evaluation metrics. For this data set, both the LB
and RU approaches improve the performance of all six active learning algo-
rithm variants in the presence of unlabelable examples. Again, the algorithm
that chooses the fewest unlabelable examples, LB-Maxmin in this case, is not
the one with the best performance. Unlike in the previous experiment, LB and
RU did not increase the number of trials required to reach the cutoff we chose,
in this case 90% accuracy.

4.4

The data set shown in Figure 1, which we are making available from our web-
site [9], was collected by the MISR instrument over the Sahara Desert. With
the help of an atmospheric scientist, we identified three regions in the image
corresponding to clouds, clear land, and dust, and extracted feature vectors for
2,000 pixels from each of those three regions. The feature vector for each pixel
consisted of the bidirectional reflectance factor for each pixel and a subset of the

Automated Identification of Clouds in MISR Data

Algorithm
Random
Simple
Maxmin

-
0.44
0.23
0.37

-
0.79
0.81
0.59
0.64

-

-

-
0.45
0.41

Prob. Maxmin
Prob. Diverse
LB-Simple
RU-Simple
LB-Maxmin
RU-Maxmin
LB-Diverse
RU-Diverse
Prob. LB-Simple
Prob. RU-Simple
Prob. LB-Maxmin
Prob. RU-Maxmir
Prob. LB-Diverse
Prob. RU-Diverse

95 (32%)

112 (37%)

35 (12%)

92 (31%)

88 (29%)

66 (22%)
103 (34%)
87 (29%)

86 (29%)
36 (12%)
41 (14%)
90 (30%)
89 (30%)

98 (33%)

Deff3oo
1.00
1.63
7.46
0.82
0.76
1.03
0.81
0.87
0.80
7.52
6.33
0.67
0.67
0.60
0.57
1.12
1.07
0.80
0.82

74
-
-

52
42
43
41
-
-
57
66

95%-trials 1 95%-speed
71 I 1.00

0.96
-

-
1.37
1.69
1.65
1.73
-

-
1.25
1.08

- - I - -

-++--%-
- I -

Leff300)# unlabelable chose
91 (30%)
237 (79%)
162 (54%)

Table 3. Results of experiments on the MISR data, averaged over 30 runs. The task was
to learn to separate cloudy from clear pixels, with dust pixels marked as unlabelable.

pixels within a 5x5 neighborhood, from four different spectral bands and from
cameras viewing the scenes from three different angles, yielding 156 real-valued
features per example. In all of our experiments, we chose 1000 example for the
training pool and a disjoint set of 1000 examples for the test set. For our SVM
we used an RBF kernel with y = 1 and C = 1.

We have already shown that both the LB and RU approaches improve the
performance of Simple on this problem (Figure 2), and Table 3 reports on our
complete results for all other algorithms. In this case, the probabilistic variant
Prob. RU-Simple has the lowest defficiency and best 95%-speed, while RU-
Diverse has the best label efficiency. Once again, LB-Maxmin selects the
fewest unlabelable examples but had a poor learning rate.

5 Conclusions and Future Work

Active learning enables the application of machine learning methods to problems
where it is difficult or expensive to acquire expert labels. A key barrier to the use
of current active learning methods is that it is not always realistic to assume that
the expert labeler will be willing (or able) to assign a label to every example.
We showed that in some cases, active learning algorithms can actually perform
worse than passive learning when a significant class of examples is unlabelable.

- 4

We have proposed a new active learning framework where the expert labeler
is allowed to decline to label any example, and where the learner attempts to
model this unlabelable class t o avoid making more queries that return no useful
information. We have presented a straightforward method by which any active
learning algorithm can be modified t o avoid unlabelable examples by training
a second classifier to distinguish between the labelable and unlabelable classes.
This method should bring us closer to the goal of applying active learning to
real-world problems.

In this paper, we have focused on binary classification problems with some
unlabelable examples present. In the future, this could be extended to the more
difficult problem where the unlabelable examples are precisely those examples
that are right on the border between two classes (e.g. very near an SVM’s decision
hyperplane).

Acknowledgments

The authors wish to thank Dennis DeCoste for suggesting the initial idea that
led to this work and for valuable suggestions and feedback along the way. We
also thank David Diner, Roger Davies, and Michael Garay for motivating this
work by working with us on MISR cloud classification, and Rebecca Castaiio
and Robert Granat for other valuable feedback.

References
1. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning.

Machine Learning 15 (1994) 201-221
2. Diner, D.J., Beckert, J.C., Reilly, T.H., Bruegge, C.J., Conel, J.E., Kahn, R.A.,

Martonchik, J.V., Ackerman, T.P., Davis, R., Gerstl, S.A.W., Gordon, H.R., Muller,
J.P., Myneni, R.B., Sellers, P.J., Pinty, B., Verstraete, M.M.: Multi-angle Imaging
SpectroRadiometer (MISR) instrument description and experiment overview. IEEE
Transactions on Geoscience and Remote Sensing 36 (1998) 1072-1087

3. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2 (2002) 45-66

4. Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20 (1995) 273-
297

5. Brinker, K.: Incorporating diversity in active learning with support vector machines.
In: Proceedings of the Twentieth International Conference on Machine Learning,
Washington, D. C. (2003) 59-66

6. Bararn, Y., El-Yaniv, R., Luz, K.: Online choice of active learning algorithms.
In: Proceedings of the Twentieth International Conference on Machine Learning,
Washington, D. C. (2003) 19-26

7. Michie, D., Spiegelhalter, D., Taylor, C.: Machine Learning, Neural and Statisti-
cal Classification. Prentice Hall, Englewood Cliffs, N.J. (1994) Data available at
http://www.liacc.up.pt/ML/statlog/.

8. Hsu, C., Lin, C.: A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks 13 (2002) 415-425

9. Mazzoni, D.: MISR cloud classification dataset (2004) Available from
http://ml.jpl.nasa.gov/datasets.

http://www.liacc.up.pt/ML/statlog
http://ml.jpl.nasa.gov/datasets

